تعمیم طیف در جبرهای باناخ مختلط
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده ریاضی
- author آسیه نعمتی زاده جونقانی
- adviser حمید شایان پور نها افتخاری
- publication year 1393
abstract
یکی از مفاهیم اصلی در تئوری جبرهای باناخ، طیف و شعاع طیفی می باشد که نقش مهمی را در این زمینه ایفا می کند. از طیف و شعاع طیفی در مورد پیوستگی، پیوستگی خودکار و حل معادلات عملگر استفاده می شود. در این پایان نامه ابتدا مفهوم طیف را معرفی می کنیم سپس تعمیم هایی از آن موسوم به طیف رنسفورد، شبه طیف و طیف شرطیرا ارائه می دهیم. در ادامه نشان خواهیم داد که طیف معمولی و طیف شرطی حالت خاصی از طیف رنسفورد هستند و نگاشت از جبر باناخ یکدار به خانواده ای از زیرمجموعه های فشرده اعداد مختلط نیم پیوسته بالایی است و اگر مولفه اصلی مجموعه رنسفورد شبه محدب باشد، آن گاه طیف رنسفورد زیرمجموعه ناتهی از اعداد مختلط است. همچنین اگر نگاشت خطی حافظ شبه طیف بین دو جبر باناخ یکدار باشد، آن گاه حافظ طیف است. نشان خواهیم داد که طیف شرطی نقطه تنها ندارد و دارای تعداد متناهی مولفه است و هر مولفه آن شامل یک عنصر از طیف معمولی است. و در انتها با توجه به شبه معکوس پذیری نسبت به شبه ضرب مفاهیم طیف شرطی و شبه طیف را برای جبر باناخ غیریکدار توسیع می دهیم و برخی از ویژگی های شناخته شده طیف شرطی و شبه طیف را به حالتی که جبر باناخ ما غیریکدار باشد، تعمیم می دهیم .
similar resources
جبرهای باناخ انقباض پذیر
فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.
full textطیف رانسفورد و شرطی در جبرهای باناخ مختلط یکانی
در این پایان نامه نوع جدیدی از طیف را که طیف شرطی نامیده می شود& معرفی می کنیم. انتظار می رود که این طیف در حل معادلات عملگری مفید باشد. این طیف در واقع حالت خاصی از طیف تعمیم یافته معرفی شده توسط رانسفورد می باشد.
15 صفحه اولنگاشتهای نگهدارنده جفتهای عملگری باناخ روی جبرهای عملگری
فرض کنید $mathcal{B(X)}$ جبر شامل تمام عملگرهای خطی کراندار روی فضای باناخ $mathcal{X}$ و $phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر $A in mathcal{B(X)}$ و $x in mathcal{X}$، اسکالرهای $alpha , ...
full textمرکز توپولوژیکی ضعیف از دوگان دوم جبرهای باناخ
در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده ریاضی
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023